
JDBC Guide

1

RDM Server 8.2

JDBC Guide

JDBC Guide

2

Trademarks

Raima Database Manager™ ("RDM"), RDM® Embedded, RDM® Server, RDM® Mobile, XML, db_QUERY,
db_REVISE and Velocis are trademarks of Birdstep Technology and may be registered in the United States of
America and/or other countries.

All other product or service names, logos, designs, titles, words or phrases mentioned within this publication are
trademarks, registered trademarks, service marks, or trade names of their respective owners.

This guide may contain links to third-party Web sites that are not under the control of Birdstep Technology and
Birdstep Technology is not responsible for the content on any linked site. If you access a third-party Web site
mentioned in this guide, you do so at your own risk.. Inclusion of any links does not imply Birdstep Technology
endorsement or acceptance of the content of those third-party sites.

JDBC Guide

Contents 3

Contents

Contents 3

Introduction to Java Database Connectivity with RDM Server 3

Creating a Database Application Using the RDM Server JDBC Driver 4

Registering the JDBC Driver 4

Example 1 5

RDM Server JDBC URL Syntax 5

Syntax: 5

Example 2 6

Connecting to the Server 6

Creating a Statement Handle 7

Example 3 7

Getting Results of an SQL Execution 8

Example 4 8

RDM Server Data Connection Properties 9

Overloads of the getConnection Method 10

Overload 1: URL, User ID, and Password 10

Example 5 11

Overload 2: URL and Properties Object 11

Example 6 11

Overload 3: URL Only 12

Example 7 12

Introduction to Java Database Connectivity with RDM Server

Java Database Connectivity™ provides a programming level interface for database access that is uniform and
standard. Like ODBC, JDBC is based on the X/Open SQL Call level interface. More information on JDBC is

JDBC Guide

Contents 4

available from the JavaSoft web site (http://www.javasoft.com/).

RDM Server supports a "Native-Protocol All-Java Driver" (type 4 JDBC driver). The type 4 JDBC driver is com-
pletely implemented in Java code and communicates directly with the database using RDM Server’s network
protocol.

Creating a Database Application Using the RDM Server
JDBC Driver

A Java applet is a program written in Java that is part of an HTML page residing on a Web server. Users run the
applet by browsing the applet’s Web page. When a user downloads the Web page, the browser also downloads
the applet and its JDBC Driver, and then executes the applet within the browser context. Since the applets
usually come across the network from unidentifiable servers, they are sandboxed on the client to provide secu-
rity. This means that there are numerous constraints when database applications are deployed as applets.

Unlike an applet, a Java application is a program that resides on the user’s machine. Thus it does not have the
limitations of an applet. However, since Java is an interpreted language, users must start Java applications from
a command line. To do this, pass the name of the application as a parameter when starting the Java interpreter.

To develop an RDM Server database applet or application, you must use a Java development environment com-
patible with Version 5 or later of JavaSoft’s Java Development Kit (JDK).

To create a database applet or application program to access RDM Server, the following steps provide a gen-
eral guideline.

1. Register the JDBC Driver.
2. Use the RDM Server JDBC URL syntax.
3. Connect to the server.
4. Create a statement handle.
5. Prepare and execute any SQL statements.
6. Get data results from the SQL execution.

Important: Please refer to the JDBC specification before reading further in this document. This document
assumes basic knowledge of JDBC interfaces and classes. A complete JDBC API reference is available in the
JDK or at the JavaSoft website (http://www.javasoft.com).

Registering the JDBC Driver

If you are using Java 6 or later just having the driver file in your CLASSPATH is sufficient to register it. This is
because starting in Java 6, JDBC was extended to support the Service Provider mechanism and the Birdstep
JDBC driver contains sufficient information for Java to know that it is a JDBC driver and register it automatically.
If you are using a previous version of Java, you will have to ensure that the JDBC driver gets registered. To reg-
ister the JDBC Driver with the JDBC Driver Manager, you simply ensure that the JDBC Driver gets loaded. The

JDBC Guide

Contents 5

simplest way to do this is with the forName() method of theClass class. If you are unsure whether you will be
using Java 6 or not you can use this method. It will not conflict with the Service Provider mechanism.

The following code example shows how to register the JDBC Driver.

Example 1

In this example, you register the JDBC Driver before calling theDriverManager.getConnection() method.

Connection login(String sUser, String sPassword)
throws SQLException, ClassNotFoundException

{
String sURL = "jdbc:birdstep://localhost:1530";

Class.forName("com.birdstep.rdms.jdbc.Driver");
return DriverManager.getConnection(sURL, sUser, sPassword);

}

RDM Server JDBC URL Syntax

The Uniform Resource Locator (URL) you pass to theDriverManager.getConnection() method must have the
syntax shown below. This syntax is the same for all three overloads (versions) of the method. Refer to Example
2.

(In the next section, Connecting to the Server, a complete description is given of the overloads and data con-
nection properties you can specify.)

Syntax:

jdbc:birdstep://host-list[?property-list]

where:

host-list

A comma-separated list of RDM Server(s) with the following format:
host1[:port1][,host2[:port2],…hostn[:portn]]

hostx

The DNS name, host name, or IP address of a JDBC Listener Process machine.

portx

JDBC Guide

Contents 6

An optional port number of the JDBC Listener Process on that machine. If no port is specified,
the default port value (1530) is used.

server

The name or alias of the RDM Server database server you want to connect to.

property-list

An ampersand-separated list of property/value pairs with the following format:
prop1=val1[[&prop2=val2]&…propn=valn] See RDM Server Data Connection Properties later
in this document for descriptions of the properties you can specify

propx

The name of one of the RDM Server data connection properties.

valx

A valid value for the property.

1) In the URL, you can add the birdstep. prefix to any property name except the user and password. 2)
For more information on JDBC URL syntax refer to the JavaSoft web site (http://www.javasoft.com/).

Example 2

Connection login(String user, String password) throws SQLException
{

String url = "jdbc:birdstep://localhost:1530?user=" + user +
"&password=" + password + "&birdstep.autocommit=true";

try {
Class.forName("com.birdstep.rdms.jdbc.Driver");

}
catch (ClassNotFoundException e) {

System.out.println(“Birdstep JDBC driver not loaded”);
return null;

}
return DriverManager.getConnection(url);

}

Connecting to the Server

Connect to your server by passing the following information to one of the overloads of theDriv-
erManager.getConnection() method. If getConnection() is successful, it will return an object instance of a

JDBC Guide

Contents 7

Connection class; this instance can be used to create multiple instances of theStatement class that imple-
mented theStatement interface.

Table 1-1. Server Connection Information

Information Passed Where? Required?

The hostname and port number of
the RDM Server (or a list of servers
for fault tolerance)

Only in the URL Required

A user ID and password rec-
ognized by the server

As explicit parameters for overload 1 or as properties: In the
URL or In a Properties object

Required

Additional property values (includ-
ing the name of a JDBC data pro-
file)

In the URL or In a Properties object Optional

Creating a Statement Handle

Once you connect to the RDM Server database server successfully, the bulk of your database programming
involves these tasks:

executing SQL statements, processing data resulting from SQL query executions, and error handling.

To process SQL statements, you must create aStatement class.

Example 3 creates an instance of a class that implements the PreparedStatement interface and uses this class
to prepare an SQL statement and execute it.

Example 3

void prepareAndExecute(Connection conn)
{

PreparedStatement pstmt;
InputStream istream;
String file = "Test_rdms_jdbc.java";

try {
istream = new FileInputStream(ifile);

}
catch (FileNotFoundException e) {

System.out.println("The file ′" + ifile + "′ does not exist");
return;

}

JDBC Guide

Contents 8

try {
// Prepare SQL statement: if successful a PrepareStatement is
// returned
pstmt = conn.prepareStatement("insert into mytable " +

"(timecol, datecol, chartext) values (?, ?, ?)");

//Bind values
java.util.Date now = new java.util.Date();
pstmt.setTime(1, new java.sql.Time(now.getTime()));
pstmt.setDate(2, new java.sql.Date(now.getTime()));
pstmt.setAsciiStream(3, istream);

// execute the SQL statement
pstmt.execute();

// if autocommit was off you could do a "conn.commit();" here to
// cause the data to be committed.

pstmt.close();
}
catch (SQLException e) {

e.printStackTrace();
}

}

Getting Results of an SQL Execution

Resulting data (if any) from an SQL query is returned to the JDBC application via a ResultSet. Example 4
executes an SQL query that returns data to the JDBC application.

Example 4

public void testReadBlobs(Connection conn)
{

InputStream instream;

try {
//Create a Statement from the Connection
Statement stmt = conn.createStatement();

//Execute the query and return the resulting data into ResultSet
ResultSet results = stmt.executeQuery(

"select timecol, datecol, chartext from mytable");

JDBC Guide

Contents 9

while (results.next()) {
System.out.println(results.getString("timecol"));
System.out.println(results.getString("datecol"));
System.out.println("ASCII Data:");
instream = results.getAsciiStream("chartext");
BufferedReader br = new BufferedReader(

new InputStreamReader(instream));

String line;
try {

while ((line = br.readLine()) != null)
System.out.println(" " + line);

}
catch (IOException e) {

System.out.println("I/O error reading the chartext column");
stmt.close();
return;

}
}

stmt.close();
}
catch (SQLException e) {

e.printStackTrace();
}

}

RDM Server Data Connection Properties

This section describes the data connection properties you can set in your Java applet or application. Each of the
property descriptions contains the name of the property and what it sets, possible values, default value (if any),
and additional comments on usage.

user Sets the AuthID with which the application attempts to login to the RDM Server.

Possible
Values

Any valid AuthID with the appropriate access to the data referenced in your
application.

Default Value None

Comments You must specify a value for this property.

password Sets the password for the AuthID specified by the value of the user property.

Possible
Values

The current password for the AuthID specified as the value of the user property.
For an AuthID that has no password, use an empty string as the value of this prop-
erty.

JDBC Guide

Contents 10

Default
Value

None

Comments You must specify a value for this property.

autocommit Sets the autocommit mode.

Possible
Values

ON, TRUE, OFF, FALSE

Default
Value

TRUE

Comments
This property and its default value match the JDBC standard. Auto-commit
causes the JDBC driver to do a transaction commit after each individual SQL
statement.

transIsolation Sets the transaction isolation level.

Possible
Values

REPEATABLE_READ, READ_COMMITTED, or READ_UNCOMMITTED

Default
Value

REPEATABLE_READ

Comments
This property and its default value match the JDBC standard. Transaction iso-
lation levels define how isolated each transaction is from the data accessed and
modified by other transactions.

Overloads of the getConnection Method

In a Java applet or application, you connect to your server by calling one of three overloads for theDriv-
erManager.getConnectionmethod.

The one you choose to use depends upon the following:

l The parameters supported by your Java development environment, and
l The data connection properties you need to specify.

The overloads of theDriverManager.getConnection() method take the following parameters:

1. A URL string, a user ID string, and a password string
2. A URL string and a Properties object
3. A URL string only

Overload 1: URL, User ID, and Password

You can use Overload 1 to specify all of the following without having to define a Properties object:

JDBC Guide

Contents 11

l The URL (string) that identifies the address of the RDM Server and port number.
l The user ID with which to log into the server (string).
l The password associated with the user ID (string).
l Other RDM Server data connection properties defined in the URL.

It is appropriate to use Overload 1 if you:

Have few property values to set, or

Need to switch from the JDBC Driver to other JDBC Drivers within the code of your applet or application.

Example 5

Example 5 uses Overload 1 to define property values in the URL, that is, without instantiating a Properties
object.

Connection login(String user, String password)
{

String url = "jdbc:birdstep://myhost:1530";

//Connect to the database
return DriverManager.getConnection(url, user, password);

}

Overload 2: URL and Properties Object

You can use Overload 2 to specify:

l The server URL (string), or
l The RDM Server data connection properties defined in a single instance of a Properties object.

It is appropriate to use Overload 2 if:

Your Java development environment supports a Properties object and you have many properties you want to
set for each data connection.

In addition to specifying the property values in an object, you can:

l Override property values in the URL itself, or
l Specify the name of a JDBC data profile in your Properties object to pick up predefined property values.

Example 6

Example 6 uses Overload 2 to set properties in an object and pass them along with the URL.

JDBC Guide

Contents 12

Connection login(String user, String password)
{

Properties props;
String url = "jdbc:raima://myhost:1530";

//Create a Properties object
props = new Properties();

//Load properties from a properties file
props.load(new FileInputStream("mydb.properties"));

//Set the user name and password
props.put("user", user);
props.put("password", password);

//Connect to the database
return DriverManager.getConnection(url, props);

}

Important: In the Properties object you must add the birdstep. prefix to every property name except user and
password.

Overload 3: URL Only

If necessary, you can specify the AuthID and password for logging into the server (as well as any other data con-
nection properties), in the URL itself. As with the other overloads, one of the properties you can include in the
URL is the name of a JDBC data profile.

Example 7

Example 7 uses Overload 3 to define property values and the user name and password in the URL, that is, with-
out instantiating a Properties object.

Connection login()
{

String url = "jdbc:birdstep://myhost:1530?user=admin&password=secret";

//Connect to the database
return DriverManager.getConnection(url);

}

	Contents
	Introduction to Java Database Connectivity with RDM Server
	Creating a Database Application Using the RDM Server JDBC Driver
	Registering the JDBC Driver
	Example 1

	RDM Server JDBC URL Syntax
	Syntax:
	Example 2

	Connecting to the Server
	Creating a Statement Handle
	Example 3

	Getting Results of an SQL Execution
	Example 4

	RDM Server Data Connection Properties
	Overloads of the getConnection Method
	Overload 1: URL, User ID, and Password
	Example 5
	Overload 2: URL and Properties Object
	Example 6
	Overload 3: URL Only
	Example 7

